
Chromatron Documentation
Release 0.0

Jeremy Billheimer

Mar 30, 2018

Contents:

1 Overview 1

2 Getting Started 3
2.1 Resources for beginners . 3
2.2 Where to get help . 3
2.3 Things you will need . 3
2.4 Install tools . 4
2.5 Basic setup . 4
2.6 LED setup . 5
2.7 Dimmer Controls . 5
2.8 FX Script . 5

3 FX Script Guide 7
3.1 Installation . 7
3.2 Usage . 7
3.3 Example . 8
3.4 Basics . 8
3.5 Graphics System . 10
3.6 Performance Notes . 14

4 Hardware Guide 17
4.1 Pinouts . 17
4.2 LED Connections . 18
4.3 Specifications . 20

5 Status LED 21
5.1 Power up . 21
5.2 Normal operation . 21
5.3 Errors . 22

6 Updating firmware 23

7 Key-value System, Meta Tags, and Queries 25

8 Command Line Interface Reference 27
8.1 chromatron . 27

9 Documentation To-Do 41

i

10 Indices and tables 43

Python Module Index 45

ii

CHAPTER 1

Overview

Chromatron is an open source Wifi pixel controller. It is a complete hardware and software toolkit designed specifically
for making projects with LED pixel strips.

Chromatron began life as a Kickstarter project, which is still an excellent place to see what this project is all about.
You can also find more information here.

1

https://www.kickstarter.com/projects/1286098094/chromatron-wifi-pixel-controller
http://chromatron.io/

Chromatron Documentation, Release 0.0

2 Chapter 1. Overview

CHAPTER 2

Getting Started

2.1 Resources for beginners

If this is your first time doing an LED project, you can do no better than Adafruit’s excellent getting started guides:

Adafruit NeoPixel Überguide

Adafruit DotStar LEDs

While you’re there, please consider picking up your first set of LEDs from them. You can absolutely find LEDs
cheaper elsewhere on the Internet, but Adafruit helps enable projects like Chromatron to exist by the sheer volume of
information, guides, and enthusiasm they create. The Maker community thrives on the good will of its members.

2.2 Where to get help

Stuck? Something broken? Just want to show off your project?

This is the place for all of that.

Want to file a bug report (or request a feature)? You can do that on the Github page. Please only file an issue for actual
bugs (or features) - if you just need help, the Google Group is a better place for that.

2.3 Things you will need

• Chromatron

• LEDs

• A suitable power supply

• A micro USB cable

• A precision sized flathead screwdriver (1/16 inch or 1.6 mm)

3

https://learn.adafruit.com/adafruit-neopixel-uberguide
https://learn.adafruit.com/adafruit-dotstar-leds
https://groups.google.com/forum/#!forum/chromatron
https://github.com/sapphireos/chromatron/issues

Chromatron Documentation, Release 0.0

• A multimeter (not technically required, but since you’re working with electricity, you should really have one)

2.4 Install tools

First, you’re going to need Python 2.7, which you can get here. You won’t need to use Python directly, but the
command line tools need it to run.

Next, install Chromatron’s tools:

$ pip install chromatron

You can check that it installed by checking the version:

$ chromatron --version

2.5 Basic setup

First, we’re going to get Chromatron on your Wifi network.

Plug in your Chromatron via USB. The on-board LED will go through a few states as the operating system boots up.
See Status LED to learn what the LED colors mean.

Let’s see if we can talk to the Chromatron:

$ chromatron --host usb discover

This should come up with some information about your Chromatron.

Next, let’s set up the Wifi:

$ chromatron --host usb wifi setup

Note: Chromatron only supports 2.4GHz networks.

Next, let’s give it a name:

$ chromatron --host usb meta setup

Note: The meta setup will also ask for a location and a set of tags. These are optional, but useful for assigning
Chromatrons to groups. Read more about meta tags here: Key-value System, Meta Tags, and Queries.

Find your Chromatron on the network:

$ chromatron discover

If you have multiple Chromatrons, you can also query for specific ones:

$ chromatron -q meow discover

4 Chapter 2. Getting Started

https://www.python.org/downloads/

Chromatron Documentation, Release 0.0

This will find any Chromatrons named, tagged, or in location ‘meow’.

Note: Meta tags must be 32 characters or less, encoded in ASCII (no Unicode support for now), and must not contain
spaces.

2.6 LED setup

Now for the fun part: connecting your LED strip. Hardware connections are shown here: Hardware Guide.

Warning: Unplug the USB cable before connecting an LED strip!

Caution: Powering via USB: Chromatron can power LEDs via the USB port. However, USB ports can only
power a small number of LEDs (8 to 10 is fairly safe - unless you are using high power LEDs like the Pixie). If
you connect a full 300 LED strip and plug in the USB, you might damage your USB port or Chromatron, and that
would be sad.

Got your LEDs connected? Double check your wiring before you power up! Everything ok? Let’s move on:

$ chromatron -q meow pixels setup

This will walk you through the pixel setup, and also get the RGB order configured.

2.7 Dimmer Controls

You can control the dimmers via the command line:

$ chromatron -q meow dimmer master 1.0

Will set to full brightness.

See Dimmers and Faders for more detailed information about how the dimmer controls work.

2.8 FX Script

Example scripts are in the FX folder in the Github repository. You can download it here if you are not using git:
https://github.com/sapphireos/chromatron/archive/master.zip

The LED setup loads the rainbow demo. You can load different scripts:

$ chromatron -q meow vm load script_name.fx

Note: The chaser.fx example will not work properly on firmware v1.0, due to a slight bug in the virtual machine (it
runs the loop twice per iteration, instead of only once). This will be fixed in the next release. The update procedure is
documented here: Updating firmware

2.6. LED setup 5

https://github.com/sapphireos/chromatron/archive/master.zip

Chromatron Documentation, Release 0.0

If you’re ready for more, FX script has its own guide: FX Script Guide

6 Chapter 2. Getting Started

CHAPTER 3

FX Script Guide

FX Script is a scripting language for creating graphics on LED pixels (such as WS2801, APA102, Neopixels, etc). It
is a simple, procedural language that uses Python syntax and runs on a custom designed virtual machine.

The language is designed for simplicity. This makes it easy to learn and easy to run on resource constrained hardware
(low power microcontrollers with less than 10 KB of RAM). The virtual machine has a built in graphics system and
optimizes common operations for pixel graphics to allow it to run as fast as possible. The compiler can operate in a
live mode to allow instant code updates to any devices on the network.

The memory constraints and speed optimizations mean the language must be limited in many respects. Object ori-
ented programming, advanced data structures, exception handling, strings, floating point math, and even recursion
are not supported. The goal is to enable rapid development of pixel graphics for small to moderately sized projects
(generally 300 pixels or less). If you need full 3D graphics across 20,000 pixels, FX Script is probably not the tool
for you. However, if you want to do live code updates on more modest projects, FX Script can dramatically improve
productivity.

3.1 Installation

The FX Script compiler is included with the chromatron Python package, which can be installed via pip:

$ pip install chromatron

3.2 Usage

The compiler is invoked via the command line:

$ chromatron compile script_name.fx

By convention, source files use a .fx extension and the compiled binary uses .fxb.

Compile and load a script to a device:

7

Chromatron Documentation, Release 0.0

$ chromatron vm load script_name.fx

Live mode: This will set up the command to recompile and reload the script file every time it is changed.

$ chromatron vm load script_name.fx --live

See Command Line Interface Reference for more information on how to use the command line interface.

3.3 Example

We’ll start with an annotated example of a rolling rainbow pattern. Afterwards, we’ll explain what everything does.
This is the FX Script equivalent of “hello world”.

rainbow.fx

this script generates a rolling rainbow pattern

declare a global variable for current hue
current_hue = Number()

init - runs once when script is loaded
def init():

set pixels to full colors (maximum saturation)
pixels.sat = 1.0

set to maximum brightness
pixels.val = 1.0

runs periodically, frame rate is configurable
def loop():

increment the base hue so the rainbow pattern
shifts across the pixels as we go from one frame
to the next.
current_hue += 0.005

declare a local variable
a = Number()
a = current_hue

loop over all pixels in array
for i in pixels.count:

pixels[i].hue = a

shift color for next pixel.
this will distribute the rainbow pattern
across the entire array.
a += 1.0 / pixels.count

3.4 Basics

FX Script uses Python as the front end language, so the best way to learn FX is to learn some basic Python first, and
then come back here.

8 Chapter 3. FX Script Guide

Chromatron Documentation, Release 0.0

There are a number of differences from Python:

3.4.1 Program Structure

Each program requires an init() function. init() executes once when the program is loaded.

Most programs will also need a loop() function. loop() is called repeatedly by the virtual machine. The loop frame
rate is configurable. See Frame Rate.

def init():
setup code goes here

pass

def loop():
called repeatedly to generate each frame of your graphics

pass

3.4.2 Variables

There is only one basic data type, Number, which is a signed 32 bit integer. Number ranges from -2,147,483,648 to
2,147,483,647.

Variables must be declared:

my_variable = Number()

All variables will initialize to 0.

3.4.3 For Loops

For loops do not uses the range/xrange functions:

correct
for count in my_variable:

iterate my_variable number of times.
count will start at 0 and increment with each iteration.
pass

wrong
for count in xrange(my_variable):

pass

3.4.4 Arrays

Instead of Python’s lists, FX uses fixed length arrays.

my_array = Array(4) # declare an array of 4 Numbers

you can do this:
for i in my_array.count:

temp = Number()

3.4. Basics 9

Chromatron Documentation, Release 0.0

temp = my_array[i]

you cannot do things like this:
for i in my_array:

temp = Number()
temp = i

3.4.5 Floats

Floating point numbers are a shortcut to represent integer values in the graphics system. They do not behave like
normal floating point numbers in Python. Remember - the underlying virtual machine only understands integers.

Most internal graphics parameters are represented as 16 bit integers (0 to 65535). However, it is often simpler to
represent these values as a floating point number between 0.0 and 1.0. Thus, in FX Script the number 0.5 represents
the integer 32768. You can use these special floats in expressions, such as 0.1 + 0.1, but be aware that something
like 0.5 * 0.5 may not do what you expect. Instead of yielding 16384 (0.25), you will actually get 32768 * 32768 =
1,073,741,824. It is generally best to avoid complex math with the floating point representation.

3.5 Graphics System

3.5.1 HSV Colorspace

All graphics in FX Script use the HSV color space. Although the LEDs themselves (along with our eyes) use RGB,
HSV is much simpler to design for specific colors. If you’re not familiar with HSV, the Wikipedia article is a good
place to start. However, we’ll explain the basics right here.

HSV is shorthand for hue, saturation, value. You could translate it as color, whiteness, brightness.

Hue

Hue is color. It works as a circle, with the colors of the rainbow spaced out along the edge. 0.0 is the top of the circle,
and represents the color red. 1/3 (0.333) is green, 2/3 (0.667) is blue. Every other color is a blend between these
values:

hue color 16 bit integer value
0.000 red 0
0.167 yellow 10944
0.333 green 21823
0.500 teal 32767
0.667 blue 43711
0.833 purple 54590
1.000 red 0

10 Chapter 3. FX Script Guide

https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV

Chromatron Documentation, Release 0.0

Note that 1.0 is the same as 0.0, hue wraps around as a circle. Thus, the value 1.5 would be the same as 0.5, etc.
As you’ll see in the rainbow demo, this wraparound behavior is incredibly useful in doing continuous, smooth color
shifts.

Sat

Saturation (sat for shorthand) is the whiteness value. 1.0 is full saturation, meaning you get all of the colors of the
rainbow. 0.0 is no saturation, which is full white. The pastel colors are created by selecting a hue, and then adjusting
the saturation.

Val

Value (val for shorthand) is brightness. 0.0 is off, 1.0 is maximum.

3.5.2 Pixel Array

This is where the fun begins. The pixel array is how we get HSV values into the pixel strip itself.

There is a master pixel array called pixels. You can set HSV values on individual pixels like so:

pixels[0].hue = 0.5 # set pixel 0 to teal
pixels[0].val = 1.0 # set pixel 0 to max brightness

pixels[1].val = 0.0 # set pixel 1 to off

If you wanted to turn on all of the pixels in the array, you could do something like this:

for i in pixels.count:
pixels[i].val = 1.0 # set pixel to max brightness

However, this is a pretty common operation, so FX Script has a better way of doing the same thing:

pixels.val = 1.0 # set all pixels to max brightness

Since pixels was not indexed, FX knows that you want to write to the entire array. While it’s nice that this saves some
typing and makes your code look a bit cleaner, the other benefit is that the virtual machine can skip doing a for loop
in the VM’s bytecode, and instead run an optimized instruction with the loop implemented in C. This means that the
second method is much, much faster than the first one.

This technique is not limited to just assignment. You can adjust parameters mathematically as well:

pixels.val += 0.1 # increment all pixels' brightness by 0.1

3.5. Graphics System 11

Chromatron Documentation, Release 0.0

This works with +, -, *, /, and % operators.

What happens when the pixel val exceeds 1.0? FX understands what hue, sat, and val all mean - it knows they are
special.

In the case of sat and val, FX will automatically limit to a range between 0.0 and 1.0. This means if you attempt to
increment val beyond 1.0, it will just stop at 1.0. The same occurs if you try to decrease below 0.0. It knows you can’t
have a negative brightness, and it also knows you probably don’t want to jump from 0.0 to 1.0 when you’re using this
syntax.

For hue, FX will allow the parameter to wrap around. If hue is 0.99 and you increment by 0.1, hue will end up at
0.09 (0.99 + 0.1 = 1.09, so we wrap to 0.09). This is how doing a rainbow color effect works, you can just increment
hue continuously and it will wrap around. No need to bounds check (unless you want to intentionally limit the color
range!).

There are some limitations of course. For instance, you cannot do an array read:

if pixels.val == 0.5: # this is not valid
pass

temp = Array()
temp = pixels.val # this is also not valid

The Array() declaration is also wrong because it does not specify the length. The point is, this type of operation is not
supported.

This means that you cannot do something like this:

pixels.val = pixels.hue # sorry, FX doesn't work this way.

If for some reason you really needed to do something like that, you can always write your own loop.

API

class fx_api.PixelArray
An array of Pixel

count
Get the number of pixels in the array.

hs_fade
Set the hue/sat fader of all pixels in the array.

hue
Set the hue of all pixels in the array.

is_fading
Check if any pixels in the array are fading.

Returns

0 - no pixels are fading

1 - one or more pixels are fading

sat
Set the saturation of all pixels in the array.

size_x
Get the number of pixels in the X dimension of the array.

12 Chapter 3. FX Script Guide

Chromatron Documentation, Release 0.0

size_y
Get the number of pixels in the Y dimension of the array.

v_fade
Set the value fader of all pixels in the array.

val
Set the value of all pixels in the array.

class fx_api.Pixel
A single pixel

hs_fade
Get/set the hue/sat fader of pixel.

hue
Get/set the hue of pixel.

is_fading
Check if pixel is fading.

Returns

0 - pixel is not fading

1 - pixel is fading

sat
Get/set the saturation of pixel.

v_fade
Get/set the value fader of pixel.

val
Get/set the value of pixel.

3.5.3 Dimmers and Faders

The graphics system has a number of dimmers and faders built in.

Dimmers

There are two global dimmers, called master and sub. Each affects the brightness of all pixels. Additionally, each
pixel’s val will further modulate the brightness for that pixel. The dimmer values multiply to achieve the final dimming
level for each pixel:

pixel_brightness = master * sub * pixel val

For instance, if master is 0.5, sub is also 0.5, and the pixel val is 1.0, the actual dimmed output will be 0.25. If the
master, sub, and the pixel val are all 0.5, that pixel will be at 0.125.

The master and sub dimmers are currently only accessible over the network via the CLI and Python APIs. There is no
interface from within FX Script to override them.

Check the current dimmer levels:

$ chromatron dimmer show

Set master dimmer to 0.5:

3.5. Graphics System 13

Chromatron Documentation, Release 0.0

$ chromatron dimmer master 0.5

Set sub dimmer to 0.3:

$ chromatron dimmer sub 0.3

See Command Line Interface Reference for more information on how to use the command line interface.

Faders

Each pixel has two time based faders. One fader is shared between hue and sat, the other is used for val. This allows
FX to produce smooth timed fades automatically.

The fader system runs every 20 ms, regardless of the frame rate of the FX VM.

assumes pixels start fully off

pixels.v_fade = 1000 # set val fader to 1000 ms fade
pixels.val = 1.0 # set all pixels to max brightness

This code will instruct each pixel to fade up to max brightness over the course of one second. Note that each time you
set val it will recompute the fader (thus resetting the one second timer from wherever val is at the time). If the frame
rate is faster than once per second, you can ensure a one second fade by doing something like this:

assumes pixels start fully off

only start the value fade if the pixels are not currently fading.
if pixels.is_fading == 0:

pixels.v_fade = 1000 # set val fader to 1000 ms fade
pixels.val = 1.0 # set all pixels to max brightness

The hue/sat fader is hs_fade, and operates the same way.

3.5.4 Frame Rate

The frame rate (rate at which the loop() function is called) is adjustable via the Python API and CLI. There is currently
no interface within FX to adjust it.

Check the current frame rate with:

$ chromatron keys get gfx_frame_rate

Set the frame rate with:

$ chromatron keys set gfx_frame_rate 100

This will set the frame rate to 100 ms, or 10 times per second. The range is adjustable from 10 ms to 65535 ms.

See Command Line Interface Reference for more information on how to use the command line interface.

3.6 Performance Notes

The FX VM is designed to be as fast as possible, but the fact is that a VM incurs some overhead that would normally
be done by hardware in machine code. The processor has a tremendous amount of work to do: process the FX script

14 Chapter 3. FX Script Guide

Chromatron Documentation, Release 0.0

itself, run faders over 300 LEDs with 3 information channels each 50 times per second (this is 45,000 channel updates
per second), do 15,000 HSV to RGB conversions per second, and also manage the Wifi connection.

You can check the performance of your script with the following command:

$ chromatron keys get vm_loop_time

This will return the number of microseconds your loop function takes to execute.

You can also check the timing of the fader system:

$ chromatron keys get vm_fade_time

For reference, with 300 pixels and running the default rainbow script, the faders will run in 800 to 900 microseconds
and the script loop itself around 1,000 microseconds.

If your script is running slow, there are a few things you can do to help.

Try lowering the frame rate. If you are using a high frame rate to achieve smooth fades, consider that the fader system
is already trying to do this for you .

Make sure you use array operations where possible, they are much faster than looping in the script.

Be aware that the compiler only does very basic optimizations. For instance, it will optimize expressions that only
involve constants:

a = Number()
a = 1 + 2 + 3

The compiler will evaluate this expression and just assign 6 to variable a.

However, it currently does not do more sophisticated optimizations:

a = Number()

for i in pixels.count:
pixels[i].hue = a

a += 1.0 / pixels.count

In this case, the 1.0 / pixels.count is computed every iteration. A faster way is this:

a = Number()
b = Number()
b = 1.0 / pixels.count

for i in pixels.count:
pixels[i].hue = a

a += b

Just that change in the rainbow script saves almost 400 microseconds.

Finally, note that memory is also constrained. The FX compiler will impose a limit of 128 variables (which includes
all of the elements in arrays). The .fxb file format is a somewhat self-contained VM image, so you can use the file size
as a reference for how much memory (code and data) your script uses. The rainbow demo is less than 200 bytes. The
VM itself has 4096 bytes allocated, however, a script that actually uses that much memory is unlikely to perform well
at high pixel counts.

3.6. Performance Notes 15

Chromatron Documentation, Release 0.0

16 Chapter 3. FX Script Guide

CHAPTER 4

Hardware Guide

4.1 Pinouts

4.1.1 Power

Vin - 4 to 16V power supply connection

Vin must match the supply voltage required for the LEDs. Thus, if you are using 5V LEDs, Vin needs to be 5V. The
same goes with 12V LEDs.

Warning: Double check your supply voltage before powering on for the first time! If you’re powering Chromatron
on 12V and plug in 5V LEDs, you’re going to damage the LED strip (Chromatron itself will be fine).

17

Chromatron Documentation, Release 0.0

Note: Note that in the case of the WS2811 at 12V, the data and clock drivers with automatically limit their output to
less than 6V (the WS2811 power is 12V, but signalling is nominally 5V).

GND - Ground connection

There are two sets of power pins. Both Vins and both GNDs are shorted together in the PCB with thick traces. You
can supply power to the board with one set, and use the other as power connections for the LED strip.

4.1.2 IO

PWM1 - PWM output for analog pixel mode

PWM2/CLK - PWM output or pixel clock, depending on pixel strip mode.

PWM3 - PWM output for analog pixel mode

PWM4/DATA - Pixel data output. This can also be a spare PWM channel, however, this is not yet supported in the
current firmware version.

4.2 LED Connections

4.2.1 4 Wire (APA102, WS2801)

4 wire LED strips use one set of power connections, data, and clock.

18 Chapter 4. Hardware Guide

Chromatron Documentation, Release 0.0

4.2.2 3 Wire (WS2812, WS2812b, WS2811, Pixie)

3 wire LED strips use one set of power connections and data. Clock is not used.

4.2.3 PWM

PWM strips use PWM1, PWM2, and PWM3. Connect on of the Vin connections to the strip’s power input. You do
not need to worry about the RGB order, it is configurable in software.

4.2. LED Connections 19

Chromatron Documentation, Release 0.0

4.3 Specifications

Vin - 4V to 16V

PWM channels - Max. 3 amps each

Pixel channels - 320 addressable channels

20 Chapter 4. Hardware Guide

CHAPTER 5

Status LED

Chromatron has an RGB status LED mounted near the middle of the board. The colors and patterns all mean different
things:

5.1 Power up

5.1.1 Solid yellow

This means the bootloader is running. It will flash briefly on a normal start up, and will light for a few seconds after a
firmware update.

5.1.2 Solid green

The operating system is booting up.

5.2 Normal operation

5.2.1 Flashing green

The operating system is running, and Wifi is not connected.

5.2.2 Flashing blue

Wifi is connected.

21

Chromatron Documentation, Release 0.0

5.2.3 Flashing purple

Wifi is running as an access point.

Note: On firmware v1.0, this mode will flash blue/white.

5.3 Errors

5.3.1 Flashing red

The operating system has entered safe mode. Please post on the support group if this happens, as this usually indicates
the operating system has crashed and we may have a bug.

22 Chapter 5. Status LED

CHAPTER 6

Updating firmware

Download newest firmware:

$ chromatron firmware update

List firmware releases on your system:

$ chromatron firmware releases

Upgrade firmware to latest version:

$ chromatron firmware upgrade

Change firmware to a specific version:

$ chromatron firmware upgrade -r release_version

23

Chromatron Documentation, Release 0.0

24 Chapter 6. Updating firmware

CHAPTER 7

Key-value System, Meta Tags, and Queries

Chromatron’s operating system is built around an embedded key-value database. A basic key-value database is simply
a mapping between a string and some value, and some interface to read and write those values.

The key-value database is central to how Chromatron works. Almost all of its configuration data (things like which
Wifi network to connect to, dimmer settings, etc) and much of its run time information (such as Wifi signal strength,
input voltage, etc) is stored there. Most of the time when you’re changing a setting on Chromatron through the Python
API or command line tools, you’re accessing the database.

The database has eight items which are special, called “meta tags”. Each of these tags is a string, up to 32 characters
long. By convention, the first tag is the device name and the second tag is the device location. The other six have no
special meaning. These meta tags are used to find and identify devices in a way which is more descriptive than just
using a single name, IP address, or some other device ID number.

A query is a listing of up to 8 strings that are compared against the meta tags. They work as a keyword search, so the
order of strings in the meta tags or the query doesn’t matter. For instance, if you query for two tags, ‘King_Arthur’
and ‘Camelot’, you’ll retrieve any devices that have both of those strings in their meta tags. The positional order does
not matter. This makes it easy to compose multiple overlapping groups of devices.

25

Chromatron Documentation, Release 0.0

26 Chapter 7. Key-value System, Meta Tags, and Queries

CHAPTER 8

Command Line Interface Reference

8.1 chromatron

Chromatron Command Line Interface

All of these commands, except for a few setup commands, can run on groups of devices. If the host or query options
are passed, the command will discover matching devices and run on those results. If options are not provided, the
command will run on the results from the last invocation of the discover command.

Examples:

chromatron.py discover –query Camelot

Finds and stores all devices with a query tag matching Camelot.

chromatron.py firmware version

List firmware version on all devices matching the previous discover, in this case, devices located in
Camelot.

chromatron.py –query King_Arthur firmware version

List firmware version on all devices with a tagged with King_Arthur. This will not overwrite the previous
discovery results.

chromatron.py firmware version

Since no options are given, this will use the previous discovery, again matching devices located in
Camelot. This does not re-run the discovery, so if a device is added or removed from Camelot, the
discover command would need to be run again.

chromatron [OPTIONS] COMMAND [ARGS]...

27

Chromatron Documentation, Release 0.0

Options

-h, --host <host>
Name or IP address of target. Can also specify USB for local connection.

-q, --query <query>
Query for matching tags.

--version
Show the version and exit.

8.1.1 automaton

Automaton controls

chromatron automaton [OPTIONS] COMMAND [ARGS]...

load

Compile and load script to automaton

chromatron automaton load [OPTIONS] FILENAME

Options

--live
Live mode

Arguments

FILENAME
Required argument

8.1.2 compile

Compile an FX script

chromatron compile [OPTIONS] FILENAME

Options

--debug
Print debug information during script compilation

Arguments

FILENAME
Required argument

28 Chapter 8. Command Line Interface Reference

Chromatron Documentation, Release 0.0

8.1.3 dimmer

Dimmer commands

chromatron dimmer [OPTIONS] COMMAND [ARGS]...

master

Set master dimmer.

VALUE is from 0.0 to 1.0.

chromatron dimmer master [OPTIONS] VALUE

Arguments

VALUE
Required argument

show

Show current dimmer settings

chromatron dimmer show [OPTIONS]

sub

Set submaster dimmer.

VALUE is from 0.0 to 1.0.

chromatron dimmer sub [OPTIONS] VALUE

Arguments

VALUE
Required argument

8.1.4 discover

Discover Chromatron devices on the network

Discovers devices matching host or tag options. The results of this command will be stored to a file, and will be used
as the default set of devices for all other commands.

You can specify multiple tags to narrow the search. Only devices matching all tags will be found.

If host or tags are not specified, discover will find all devices.

Note that host and tag options should be passed before discover:

This will work:

8.1. chromatron 29

Chromatron Documentation, Release 0.0

chromatron.py –tag Camelot discover

This will not:

chromatron.py discover –tag Camelot

chromatron discover [OPTIONS]

8.1.5 firmware

Firmware commands

chromatron firmware [OPTIONS] COMMAND [ARGS]...

backup

Backup settings on selected devices

chromatron firmware backup [OPTIONS]

manifest

Show manifest for current firmware package

chromatron firmware manifest [OPTIONS]

Options

-r, --release <release>
Name of release to display

releases

List available releases

chromatron firmware releases [OPTIONS]

restore

Restore settings to selected devices

chromatron firmware restore [OPTIONS]

update

Update releases

30 Chapter 8. Command Line Interface Reference

Chromatron Documentation, Release 0.0

chromatron firmware update [OPTIONS]

upgrade

Upgrade firmware on selected devices

chromatron firmware upgrade [OPTIONS]

Options

-r, --release <release>
Name of release to load. Default is latest.

--force
Force firmware upgrade even if versions match.

--change_firmware <change_firmware>
Change firmware on device.

--yes
Answer yes to all firmware change confirmation prompts.

version

Show firmware version on selected devices

chromatron firmware version [OPTIONS]

8.1.6 fs

File system commands

chromatron fs [OPTIONS] COMMAND [ARGS]...

cat

View a file

chromatron fs cat [OPTIONS] FILENAME

Arguments

FILENAME
Required argument

8.1. chromatron 31

Chromatron Documentation, Release 0.0

list

List files

chromatron fs list [OPTIONS]

put

Put a file

chromatron fs put [OPTIONS] FILENAME

Arguments

FILENAME
Required argument

rm

Remove a file

chromatron fs rm [OPTIONS] FILENAME

Arguments

FILENAME
Required argument

8.1.7 identify

Identify devices

chromatron identify [OPTIONS]

8.1.8 keys

Key-value system commands.

These commands provide direct access to the key-value database.

Use caution when setting system keys. Actions cannot be undone, and a careless setting may require a complete reset
and reconfiguration of the device.

chromatron keys [OPTIONS] COMMAND [ARGS]...

32 Chapter 8. Command Line Interface Reference

Chromatron Documentation, Release 0.0

get

Get key on devices

chromatron keys get [OPTIONS] KEY

Arguments

KEY
Required argument

list

List all keys on devices

chromatron keys list [OPTIONS]

set

Set key on devices

chromatron keys set [OPTIONS] KEY VALUE

Arguments

KEY
Required argument

VALUE
Required argument

8.1.9 meta

Meta data setup commands

chromatron meta [OPTIONS] COMMAND [ARGS]...

add_tag

Add a meta data tag to devices

chromatron meta add_tag [OPTIONS] TAG

Arguments

TAG
Required argument

8.1. chromatron 33

Chromatron Documentation, Release 0.0

list

List meta data tags on devices

chromatron meta list [OPTIONS]

reset

Reset meta data to default

chromatron meta reset [OPTIONS]

Options

--force
Force meta data reset without prompting for confirmation.

rm_tag

Remove a meta data tag from devices

chromatron meta rm_tag [OPTIONS] TAG

Arguments

TAG
Required argument

set_location

Set location on devices

chromatron meta set_location [OPTIONS] TAG

Arguments

TAG
Required argument

set_name

Set name on devices

chromatron meta set_name [OPTIONS] TAG

34 Chapter 8. Command Line Interface Reference

Chromatron Documentation, Release 0.0

Arguments

TAG
Required argument

setup

Set meta data on devices.

Meta data is:

name location

and up to 6 additional tags

Each item is an ASCII string, up to 32 characters.

chromatron meta setup [OPTIONS]

8.1.10 ping

Ping devices

chromatron ping [OPTIONS]

8.1.11 pixels

Pixel commands

chromatron pixels [OPTIONS] COMMAND [ARGS]...

get_clock

Get pixel clock.

Returns current pixel clock in Hz.

chromatron pixels get_clock [OPTIONS]

hue

Set hue on all pixels

chromatron pixels hue [OPTIONS] VALUE

Arguments

VALUE
Required argument

8.1. chromatron 35

Chromatron Documentation, Release 0.0

reset

Reset pixel configuration to default

chromatron pixels reset [OPTIONS]

sat

Set sat on all pixels

chromatron pixels sat [OPTIONS] VALUE

Arguments

VALUE
Required argument

set_clock

Set pixel clock.

VALUE is in Hz.

Valid range is 250 KHz to 3.2 MHz.

The default pixel clock is set to 1 MHz. It is not recommended to change this.

The signal quality will begin to degrade above 2 MHz, and operation above this range is not guaranteed.

The WS2811/WS2812 mode uses a fixed clock and will override any setting attempted through this command.

This setting is ignored in PWM mode.

chromatron pixels set_clock [OPTIONS] VALUE

Arguments

VALUE
Required argument

setup

Configure pixel driver settings.

This command will set up pixel type, number of pixels, and RGB order.

chromatron pixels setup [OPTIONS]

36 Chapter 8. Command Line Interface Reference

Chromatron Documentation, Release 0.0

show_settings

Show pixel settings.

Shows pixel mode, clock, and pixel count.

Note that some of the pixel modes map to multiple pixel types. This command will return the name of the pixel mode
used by Chromatron internally, and may not match the name used to configure the device.

Example: ws2811, ws2812, and ws2812b internally all use the ws2811 mode.

chromatron pixels show_settings [OPTIONS]

val

Set val on all pixels

chromatron pixels val [OPTIONS] VALUE

Arguments

VALUE
Required argument

8.1.12 reboot

Reboot devices

chromatron reboot [OPTIONS]

8.1.13 show

Show current devices

chromatron show [OPTIONS]

8.1.14 vm

Virtual machine controls

chromatron vm [OPTIONS] COMMAND [ARGS]...

clean

Erase all VM script files (.fxb)

chromatron vm clean [OPTIONS]

8.1. chromatron 37

Chromatron Documentation, Release 0.0

load

Compile and load script to virtual machine

chromatron vm load [OPTIONS] FILENAME

Options

--live
Live mode

Arguments

FILENAME
Required argument

reload

Recompile and reload the FX script on device

chromatron vm reload [OPTIONS]

reset

Reset virtual machine

chromatron vm reset [OPTIONS]

start

Start virtual machine

chromatron vm start [OPTIONS]

stop

Stop virtual machine

chromatron vm stop [OPTIONS]

8.1.15 wifi

Wifi setup commands

chromatron wifi [OPTIONS] COMMAND [ARGS]...

38 Chapter 8. Command Line Interface Reference

Chromatron Documentation, Release 0.0

monitor

Monitor Wifi signal strength

chromatron wifi monitor [OPTIONS]

reset

Reset wifi configuration to default.

This command only works over USB.

chromatron wifi reset [OPTIONS]

setup

Configure wifi settings over USB.

Connects to a device over USB and prompts for wifi parameters. If multiple devices are connected to USB, only one
of them will be selected.

This command ignores discovery parameters and only works over USB. This is to prevent accidentally breaking the
wifi configuration of an entire group of devices. If you really need to change wifi parameters of a device over wifi, see
the keys subcommand.

You can pass the SSID and password on the command line as a shortcut.

chromatron wifi setup [OPTIONS]

Options

--wifi_ssid <wifi_ssid>
Wifi router

--wifi_password <wifi_password>
Wifi password

8.1. chromatron 39

Chromatron Documentation, Release 0.0

40 Chapter 8. Command Line Interface Reference

CHAPTER 9

Documentation To-Do

Chromatron is an extremely powerful system, and the documentation at present only covers the basics.

Here’s some things that still need documentation. Just because the docs aren’t finished doesn’t mean you can’t use
advanced features! If you want to learn more about how something works but don’t want to wait for me to finish
writing, post a question in the user group.

• database linkage to FX script: you can link variables in FX script to the database, and then access them over the
network.

• pixel arrays: you can create virtual pixel arrays in an FX script and access them independently. This is useful if
you want to control different sections of a single strip differently (for instance, if you made a light up cube, you
could have a separate array defined for each side).

• Accessing the auxiliary IO connections to connect sensors, etc: this will require a firmware update (which is not
yet released), but will allow your scripts to interact with the outside world.

• Using the Python API directly: you can integrate Chromatron’s drivers into your own projects, stream raw
graphics directly to the pixel array, etc.

• Building your own custom firmware: Not for the faint of heart, as Chromatron has about 20,000 lines of op-
erating system that makes it work. However, it is an extremely powerful system and can be used as a general
purpose microcontroller platform.

41

https://groups.google.com/forum/#!forum/chromatron

Chromatron Documentation, Release 0.0

42 Chapter 9. Documentation To-Do

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

43

Chromatron Documentation, Release 0.0

44 Chapter 10. Indices and tables

Python Module Index

f
fx_api, 12

45

Chromatron Documentation, Release 0.0

46 Python Module Index

Index

Symbols
–change_firmware <change_firmware>

chromatron-firmware-upgrade command line option,
31

–debug
chromatron-compile command line option, 28

–force
chromatron-firmware-upgrade command line option,

31
chromatron-meta-reset command line option, 34

–live
chromatron-automaton-load command line option,

28
chromatron-vm-load command line option, 38

–version
chromatron command line option, 28

–wifi_password <wifi_password>
chromatron-wifi-setup command line option, 39

–wifi_ssid <wifi_ssid>
chromatron-wifi-setup command line option, 39

–yes
chromatron-firmware-upgrade command line option,

31
-h, –host <host>

chromatron command line option, 28
-q, –query <query>

chromatron command line option, 28
-r, –release <release>

chromatron-firmware-manifest command line op-
tion, 30

chromatron-firmware-upgrade command line option,
31

C
chromatron command line option

–version, 28
-h, –host <host>, 28
-q, –query <query>, 28

chromatron-automaton-load command line option

–live, 28
FILENAME, 28

chromatron-compile command line option
–debug, 28
FILENAME, 28

chromatron-dimmer-master command line option
VALUE, 29

chromatron-dimmer-sub command line option
VALUE, 29

chromatron-firmware-manifest command line option
-r, –release <release>, 30

chromatron-firmware-upgrade command line option
–change_firmware <change_firmware>, 31
–force, 31
–yes, 31
-r, –release <release>, 31

chromatron-fs-cat command line option
FILENAME, 31

chromatron-fs-put command line option
FILENAME, 32

chromatron-fs-rm command line option
FILENAME, 32

chromatron-keys-get command line option
KEY, 33

chromatron-keys-set command line option
KEY, 33
VALUE, 33

chromatron-meta-add_tag command line option
TAG, 33

chromatron-meta-reset command line option
–force, 34

chromatron-meta-rm_tag command line option
TAG, 34

chromatron-meta-set_location command line option
TAG, 34

chromatron-meta-set_name command line option
TAG, 35

chromatron-pixels-hue command line option
VALUE, 35

chromatron-pixels-sat command line option

47

Chromatron Documentation, Release 0.0

VALUE, 36
chromatron-pixels-set_clock command line option

VALUE, 36
chromatron-pixels-val command line option

VALUE, 37
chromatron-vm-load command line option

–live, 38
FILENAME, 38

chromatron-wifi-setup command line option
–wifi_password <wifi_password>, 39
–wifi_ssid <wifi_ssid>, 39

count (fx_api.PixelArray attribute), 12

F
FILENAME

chromatron-automaton-load command line option,
28

chromatron-compile command line option, 28
chromatron-fs-cat command line option, 31
chromatron-fs-put command line option, 32
chromatron-fs-rm command line option, 32
chromatron-vm-load command line option, 38

fx_api (module), 12

H
hs_fade (fx_api.Pixel attribute), 13
hs_fade (fx_api.PixelArray attribute), 12
hue (fx_api.Pixel attribute), 13
hue (fx_api.PixelArray attribute), 12

I
is_fading (fx_api.Pixel attribute), 13
is_fading (fx_api.PixelArray attribute), 12

K
KEY

chromatron-keys-get command line option, 33
chromatron-keys-set command line option, 33

P
Pixel (class in fx_api), 13
PixelArray (class in fx_api), 12

S
sat (fx_api.Pixel attribute), 13
sat (fx_api.PixelArray attribute), 12
size_x (fx_api.PixelArray attribute), 12
size_y (fx_api.PixelArray attribute), 12

T
TAG

chromatron-meta-add_tag command line option, 33
chromatron-meta-rm_tag command line option, 34

chromatron-meta-set_location command line option,
34

chromatron-meta-set_name command line option,
35

V
v_fade (fx_api.Pixel attribute), 13
v_fade (fx_api.PixelArray attribute), 13
val (fx_api.Pixel attribute), 13
val (fx_api.PixelArray attribute), 13
VALUE

chromatron-dimmer-master command line option,
29

chromatron-dimmer-sub command line option, 29
chromatron-keys-set command line option, 33
chromatron-pixels-hue command line option, 35
chromatron-pixels-sat command line option, 36
chromatron-pixels-set_clock command line option,

36
chromatron-pixels-val command line option, 37

48 Index

	Overview
	Getting Started
	Resources for beginners
	Where to get help
	Things you will need
	Install tools
	Basic setup
	LED setup
	Dimmer Controls
	FX Script

	FX Script Guide
	Installation
	Usage
	Example
	Basics
	Graphics System
	Performance Notes

	Hardware Guide
	Pinouts
	LED Connections
	Specifications

	Status LED
	Power up
	Normal operation
	Errors

	Updating firmware
	Key-value System, Meta Tags, and Queries
	Command Line Interface Reference
	chromatron

	Documentation To-Do
	Indices and tables
	Python Module Index

